R has little support for physical measurement units. The exception is
formed by time differences: time differences objects of class
difftime
have a units
attribute that can be
modified:
t1 = Sys.time()
t2 = t1 + 3600
d = t2 - t1
class(d)
## [1] "difftime"
units(d)
## [1] "hours"
d
## Time difference of 1 hours
units(d) = "secs"
d
## Time difference of 3600 secs
We see here that the units
method is used to retrieve
and modify the unit of time differences.
The units
package generalizes this idea to other
physical units, building upon the udunits2 C
library. The udunits2
library provides the following
operations:
- validating whether an expression, such as
m/s
is a valid physical unit - verifying whether two units such as
m/s
andkm/h
are convertible - converting values between two convertible units
- providing names and symbols for specific units
- handle different character encodings (utf8, ascii, iso-8859-1 and latin1)
The units
R package uses the udunits2 C
library to extend R with functionality for manipulating numeric vectors
that have physical measurement units associated with them, in a similar
way as difftime
objects behave.
Setting units, unit conversion
We can set units to numerical values by set_units
:
library(units)
## udunits database from /usr/share/xml/udunits/udunits2.xml
(a <- set_units(runif(10), m/s))
## Units: [m/s]
## [1] 0.080750138 0.834333037 0.600760886 0.157208442 0.007399441 0.466393497
## [7] 0.497777389 0.289767245 0.732881987 0.772521511
the result, e.g.
set_units(10, m/s)
## 10 [m/s]
literally means “10 times 1 m divided by 1 s”. In writing, the “1” values are omitted, and the multiplication is implicit.
Unit conversion
When conversion is meaningful, such as hours to seconds or meters to kilometers, conversion can be done explicitly by setting the units of a vector
b = a
units(b) <- make_units(km/h)
b
## Units: [km/h]
## [1] 0.29070050 3.00359893 2.16273919 0.56595039 0.02663799 1.67901659
## [7] 1.79199860 1.04316208 2.63837515 2.78107744
Basic manipulations
Arithmetic operations
Arithmetic operations verify units, and create new ones
a + a
## Units: [m/s]
## [1] 0.16150028 1.66866607 1.20152177 0.31441688 0.01479888 0.93278699
## [7] 0.99555478 0.57953449 1.46576397 1.54504302
a * a
## Units: [m^2/s^2]
## [1] 6.520585e-03 6.961116e-01 3.609136e-01 2.471449e-02 5.475173e-05
## [6] 2.175229e-01 2.477823e-01 8.396506e-02 5.371160e-01 5.967895e-01
a ^ 2
## Units: [m^2/s^2]
## [1] 6.520585e-03 6.961116e-01 3.609136e-01 2.471449e-02 5.475173e-05
## [6] 2.175229e-01 2.477823e-01 8.396506e-02 5.371160e-01 5.967895e-01
a ** -2
## Units: [s^2/m^2]
## [1] 153.360480 1.436551 2.770746 40.462087 18264.262998
## [6] 4.597217 4.035800 11.909716 1.861795 1.675633
and convert to the units of the first argument if necessary:
a + b # m/s + km/h -> m/s
## Units: [m/s]
## [1] 0.16150028 1.66866607 1.20152177 0.31441688 0.01479888 0.93278699
## [7] 0.99555478 0.57953449 1.46576397 1.54504302
Currently, powers are only supported for integer powers, so using
a ** 2.5
would result in an error.
Unit simplification
There are some basic simplification of units:
t <- make_units(s)
a * t
## Units: [m]
## [1] 0.080750138 0.834333037 0.600760886 0.157208442 0.007399441 0.466393497
## [7] 0.497777389 0.289767245 0.732881987 0.772521511
which also work when units need to be converted before they can be simplified:
t <- make_units(min)
a * t
## Units: [m]
## [1] 4.8450083 50.0599822 36.0456532 9.4325065 0.4439665 27.9836098
## [7] 29.8666433 17.3860347 43.9729192 46.3512907
Simplification to unit-less values gives the “1” as unit:
m <- make_units(m)
a * t / m
## Units: [1]
## [1] 4.8450083 50.0599822 36.0456532 9.4325065 0.4439665 27.9836098
## [7] 29.8666433 17.3860347 43.9729192 46.3512907
Allowed operations that require convertible units are +
,
-
, ==
, !=
, <
,
>
, <=
, >=
. Operations
that lead to new units are *
, /
, and the power
operations **
and ^
.
Mathematical functions
Mathematical operations allowed are: abs
,
sign
, floor
, ceiling
,
trunc
, round
, signif
,
log
, cumsum
, cummax
,
cummin
.
signif(a ** 2 / 3, 3)
## Units: [m^2/s^2]
## [1] 2.17e-03 2.32e-01 1.20e-01 8.24e-03 1.83e-05 7.25e-02 8.26e-02 2.80e-02
## [9] 1.79e-01 1.99e-01
cumsum(a)
## Units: [m/s]
## [1] 0.08075014 0.91508317 1.51584406 1.67305250 1.68045194 2.14684544
## [7] 2.64462283 2.93439007 3.66727206 4.43979357
log(a) # base defaults to exp(1)
## Units: [(ln(re 1 m.s-1))]
## [1] -2.5163956 -0.1811226 -0.5095583 -1.8501827 -4.9063508 -0.7627256
## [7] -0.6976023 -1.2386773 -0.3107706 -0.2580954
log(a, base = 10)
## Units: [(lg(re 1 m.s-1))]
## [1] -1.09285673 -0.07866056 -0.22129835 -0.80352414 -2.13080108 -0.33124751
## [7] -0.30296483 -0.53795071 -0.13496595 -0.11208942
log(a, base = 2)
## Units: [(lb(re 1 m.s-1))]
## [1] -3.6303915 -0.2613047 -0.7351372 -2.6692494 -7.0783680 -1.1003804
## [7] -1.0064274 -1.7870336 -0.4483472 -0.3723530
Printing
Following difftime
, printing behaves differently for
length-one vectors:
a
## Units: [m/s]
## [1] 0.080750138 0.834333037 0.600760886 0.157208442 0.007399441 0.466393497
## [7] 0.497777389 0.289767245 0.732881987 0.772521511
a[1]
## 0.08075014 [m/s]
Subsetting
The usual subsetting rules work:
a[2:5]
## Units: [m/s]
## [1] 0.834333037 0.600760886 0.157208442 0.007399441
a[-(1:9)]
## 0.7725215 [m/s]
Concatenation
c(a,a)
## Units: [m/s]
## [1] 0.080750138 0.834333037 0.600760886 0.157208442 0.007399441 0.466393497
## [7] 0.497777389 0.289767245 0.732881987 0.772521511 0.080750138 0.834333037
## [13] 0.600760886 0.157208442 0.007399441 0.466393497 0.497777389 0.289767245
## [19] 0.732881987 0.772521511
concatenation converts to the units of the first argument, if necessary:
c(a,b) # m/s, km/h -> m/s
## Units: [m/s]
## [1] 0.080750138 0.834333037 0.600760886 0.157208442 0.007399441 0.466393497
## [7] 0.497777389 0.289767245 0.732881987 0.772521511 0.080750138 0.834333037
## [13] 0.600760886 0.157208442 0.007399441 0.466393497 0.497777389 0.289767245
## [19] 0.732881987 0.772521511
c(b,a) # km/h, m/s -> km/h
## Units: [km/h]
## [1] 0.29070050 3.00359893 2.16273919 0.56595039 0.02663799 1.67901659
## [7] 1.79199860 1.04316208 2.63837515 2.78107744 0.29070050 3.00359893
## [13] 2.16273919 0.56595039 0.02663799 1.67901659 1.79199860 1.04316208
## [19] 2.63837515 2.78107744
Conversion to/from difftime
From difftime
to units
:
vice versa:
(dt = as_difftime(du))
## Time difference of 1 hours
class(dt)
## [1] "difftime"
units in matrix
objects
set_units(matrix(1:4,2,2), m/s)
## Units: [m/s]
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
set_units(matrix(1:4,2,2), m/s * m/s)
## Units: [m^2/s^2]
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
but
strips units.
units objects in data.frame
s
units in data.frame
objects are printed, but do not
appear in summary
:.
set.seed(131)
d <- data.frame(x = runif(4),
y = set_units(runif(4), s),
z = set_units(1:4, m/s))
d
## x y z
## 1 0.2064370 0.8463468 [s] 1 [m/s]
## 2 0.1249422 0.5292048 [s] 2 [m/s]
## 3 0.2932732 0.5186254 [s] 3 [m/s]
## 4 0.3757797 0.2378545 [s] 4 [m/s]
summary(d)
## x y z
## Min. :0.1249 Min. :0.2379 Min. :1.00
## 1st Qu.:0.1861 1st Qu.:0.4484 1st Qu.:1.75
## Median :0.2499 Median :0.5239 Median :2.50
## Mean :0.2501 Mean :0.5330 Mean :2.50
## 3rd Qu.:0.3139 3rd Qu.:0.6085 3rd Qu.:3.25
## Max. :0.3758 Max. :0.8463 Max. :4.00
d$yz = with(d, y * z)
d
## x y z yz
## 1 0.2064370 0.8463468 [s] 1 [m/s] 0.8463468 [m]
## 2 0.1249422 0.5292048 [s] 2 [m/s] 1.0584095 [m]
## 3 0.2932732 0.5186254 [s] 3 [m/s] 1.5558761 [m]
## 4 0.3757797 0.2378545 [s] 4 [m/s] 0.9514180 [m]
d[1, "yz"]
## 0.8463468 [m]
Formatting
Units are often written in the form m2 s-1
, for square
meter per second. This can be defined as unit, and also parsed by
as_units
:
(x = 1:10 * as_units("m2 s-1"))
## Units: [m^2/s]
## [1] 1 2 3 4 5 6 7 8 9 10
udunits understands such string, and can convert them
y = 1:10 * make_units(m^2/s)
x + y
## Units: [m^2/s]
## [1] 2 4 6 8 10 12 14 16 18 20
Printing units in this form is done by
deparse_unit(x)
## [1] "m2 s-1"
Plotting
Base scatter plots and histograms support automatic unit placement in
axis labels. In the following example we first convert to SI units.
(Unit in
needs a bit special treatment, because
in
is a reserved word in R.)
mar = par("mar") + c(0, .3, 0, 0)
displacement = mtcars$disp * as_units("in")^3
units(displacement) = make_units(cm^3)
weight = mtcars$wt * 1000 * make_units(lb)
units(weight) = make_units(kg)
par(mar = mar)
plot(weight, displacement)
We can change grouping symbols from [ ]
into
( )
:
units_options(group = c("(", ")") ) # parenthesis instead of square brackets
par(mar = mar)
plot(weight, displacement)
We can also remove grouping symbols, increase space between variable name and unit by:
units_options(sep = c("~~~", "~"), group = c("", "")) # no brackets; extra space
par(mar = mar)
plot(weight, displacement)
More complex units can be plotted either with negative powers, or as
divisions, by modifying one of units
’s global options using
units_options
:
gallon = as_units("gallon")
consumption = mtcars$mpg * make_units(mi/gallon)
units(consumption) = make_units(km/l)
par(mar = mar)
plot(displacement, consumption) # division in consumption
units_options(negative_power = TRUE) # division becomes ^-1
plot(displacement, consumption) # division in consumption
As usual, units modify automatically in expressions:
units_options(negative_power = TRUE) # division becomes ^-1
par(mar = mar)
plot(displacement, consumption)
plot(1/displacement, 1/consumption)